Influence of array interspacing on the force required for successful microneedle skin penetration: theoretical and practical approaches.

نویسندگان

  • Ololade Olatunji
  • Diganta B Das
  • Martin J Garland
  • Luc Belaid
  • Ryan F Donnelly
چکیده

Insertion behaviour of microneedle (MN) arrays depends upon the mechanical properties of the skin and, MN geometry and distribution in an array. In addressing this issue, this paper studies MN array insertion mechanism into skin and provides a simple quantitative basis to relate the insertion force with distance between two MNs. The presented framework is based on drawing an analogy between a beam on an elastic foundation and mechanism of needle insertion, where insertion force is separated into different components. A theoretical analysis indicates that insertion force decreases as interspacing increases. For a specified skin type, insertion force decreased from 0.029 to 0.028 N/MN when interspacing at MN tip was increased from 50 μm (350 μm at MN base) to 150 μm (450 μm at MN base). However, dependence of insertion force seems to decrease as the interspacing is increased beyond 150 μm. To assess the validity of the proposed model, a series of experiments was carried out to determine the force required for skin insertion of MN. Experiments performed at insertion speed of 0.5 and 1.0 mm/s yielded insertion force values of 0.030 and 0.0216 N, respectively, for 30 μm interspacing at MN base (330 μm interspacing at tip) and 0.028 and 0.0214 N, respectively, for 600 μm interspacing at MN base (900 μm interspacing at tip). Results from theoretical analysis and finite element modelling agree well with experimental results, which show MN interspacing only begins to affect insertion force at low interspacing (<150 μm interspacing at MN base). This model provides a framework for optimising MN devices, and should aid development of suitable application method and determination of force for reliable insertion into skin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of polymeric microneedle arrays containing Amphotericin-B for transdermal drug delivery

Background and Aim: Drug delivery through the microneedle array has been considered as an easy and non-invasive method in recent years. The purpose of this study was to design and construct an array of biodegradable polymeric microneedles containing Amphotericin-B to introduce this system and its use in the treatment of cutaneous lesions caused by Leishmania major parasite inoculation as a mode...

متن کامل

Fabrication of conical microneedles array using photolithography

Background and Aim: Microneedle technology has led to huge changes in the field of drug delivery medicine. Using microneedles, the drug can be injected locally, painlessly, and in very low and controlled doses with high precision. Local drug delivery through the skin with microneedles has many advantages over other methods of drug delivery. In this method, the drug does not enter the gastrointe...

متن کامل

Effect of microneedle geometry and supporting substrate on microneedle array penetration into skin.

Microneedles are being fast recognized as a useful alternative to injections in delivering drugs, vaccines, and cosmetics transdermally. Owing to skin's inherent elastic properties, microneedles require an optimal geometry for skin penetration. In vitro studies, using rat skin to characterize microneedle penetration in vivo, require substrates with suitable mechanical properties to mimic human ...

متن کامل

Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using f...

متن کامل

Influence of Dimethyl Sulfoxide as a Penetration Enhancer of Piroxicam Gel Through Biological Skin

      Piroxicam is a non-steroidal anti-inflammatory agent which has an extensive use in rheumatic disorders. Since its skin penetration is still a subject for research, the aim of this study was to evaluate the effect of dimethyl sulfoxide on percutaneous penetration of piroxicam gel formulation through skin. In this study, as a model, two types of 0.5% piroxicam new gels, so called red and gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of pharmaceutical sciences

دوره 102 4  شماره 

صفحات  -

تاریخ انتشار 2013